<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Teaching Schedule</th>
<th>Examination Schedule</th>
<th>Duration of Exam. (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.TEC 1.1</td>
<td>Digital Communication Systems</td>
<td>L: 3 T: 1 P: -</td>
<td>Hrs.: 4</td>
<td>Theory/Pr.: 60 I.A: 40 Total: 100</td>
</tr>
<tr>
<td>2</td>
<td>M.TEC 1.2</td>
<td>Digital Signal Processing</td>
<td>L: 3 T: 1 P: -</td>
<td>Hrs.: 4</td>
<td>Theory/Pr.: 60 I.A: 40 Total: 100</td>
</tr>
<tr>
<td>3</td>
<td>M.TEC 1.3</td>
<td>Basics of State-Variable Techniques</td>
<td>L: 3 T: 1 P: -</td>
<td>Hrs.: 4</td>
<td>Theory/Pr.: 60 I.A: 40 Total: 100</td>
</tr>
<tr>
<td>4</td>
<td>M.TEC 1.4</td>
<td>Stochastic Methods</td>
<td>L: 3 T: 1 P: -</td>
<td>Hrs.: 4</td>
<td>Theory/Pr.: 60 I.A: 40 Total: 100</td>
</tr>
<tr>
<td>5</td>
<td>M.TEC 1.5</td>
<td>Communication Laboratory</td>
<td>- - 2*3</td>
<td>Hrs.: 6</td>
<td>Theory/Pr.: 60 I.A: 40 Total: 100</td>
</tr>
</tbody>
</table>

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Teaching Schedule</th>
<th>Examination Schedule</th>
<th>Duration of Exam. (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>M.TEC 2.1</td>
<td>Information Theory and Coding</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>M.TEC 2.2</td>
<td>Optical Communication</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>M.TEC 2.3</td>
<td>Wireless and Mobile Communication</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>M.TEC 2.4</td>
<td>Elective</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>M.TEC 2.5</td>
<td>DSP Laboratory</td>
<td>-</td>
<td>-</td>
<td>2*3</td>
</tr>
</tbody>
</table>

Electives (one of the following):
M.Tec 2.4(i) Satellite Communication
M.Tec 2.4(ii) Neural Networks
M.Tech 2.4(iii) DSP Architecture and Applications

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Teaching Schedule</th>
<th>Examination Schedule</th>
<th>Duration of Exam. (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P Tot. Hrs.</td>
<td>Theory/Pr.</td>
<td>I.A</td>
</tr>
<tr>
<td>1</td>
<td>M.TEC 3.1</td>
<td>Data Communication</td>
<td>3 1 - 4 4</td>
<td>60 40 100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>M.TEC 3.2</td>
<td>Advanced Digital Communication Systems</td>
<td>3 1 - 4 4</td>
<td>60 40 100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>M.TEC 3.3</td>
<td>Current Literature Report and Seminars</td>
<td>3 1 - 4 4</td>
<td>60 40 100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>M.TEC 3.4</td>
<td>Advanced Communication Laboratory</td>
<td>- - 2*3 6</td>
<td>60 40 100</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
Master of Technology (Electronics and Communication Engg.)

DIGITAL COMMUNICATION SYSTEMS
MTEC 1.1

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit 1: REPRESENTATION OF BANDPASS SIGNAL AND SYSTEM
Response of a band pass system to band pass signal, Representation of a band pass stationary stochastic processes, Representation of digitally modulated signals.

Unit 2: MODULATION AND DEMODULATION FOR THE ADDITIVE GAUSSIAN NOISE CHANNEL: Representation of signal waveforms and channel characteristics optimum demodulation for completely known signal in additive Gaussian Noise, Binary signaling in an AWGN Channel, Mary orthogonal Signaling in an AWGN Channel, Multiphase Signaling waveforms, combined multiple phase and multiple amplitude waveforms, Carrier recovery for coherent demodulation.

Unit 3: DETECTION: Optimum demodulation for signals with random phase in additive Gaussian Noise, Non-coherent Detection of binary signal in an AWGN channel, Non Coherent detection of M-ary orthogonal signal in an AWGN channel.

Unit 4: DIGITAL SIGNALLING OVER A CHANNEL WITH INTERSYMBOL, INTERFERENCE AND ADDITIVE GAUSSIAN NOISE: Signal design for band limited channels, optimum demodulation for ISI and additive white Gaussian noise linear equalization Feedback equalization.

Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
Master of Technology (Electronics and Communication Engg.)

DIGITAL SIGNAL PROCESSING
MTEC 1.2

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exams : 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>Sessionals: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time: 3 Hours</td>
</tr>
</tbody>
</table>

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: DISCRETE – TIME DESCRIPTION OF SIGNALS & SYSTEMS.
Discrete-time sequences, response sequence, time invariant systems, stability and causality criterion for discrete-time system, linear constant coefficient difference equation, properties of real valued sequences, convolution, correlation.

Unit2: THE Z-TRANSFORM

Unit3: THE DISCRETE FOURIER TRANSFORM (DFT)
Definition, its properties, DFT, IDFT pair, circular convolution, Computations for evaluating the DFT, FFT algorithm, Analytic derivation of the “decimation-in – time FFT algorithm”, Some general observation on the FFT.

Unit4: INFINITE IMPULSE RESPONSE (IIR) FILTER DESIGN TECHNIQUES:
Introduction, Analog filter system function & frequency response, Analog low pass filter design techniques for Butterworth, Chebyshev Type-I and Type-II filters, Impulse invariance and Bilinear Transformation methods to convert Analog filters into Digital Filters. Transformation for converting low pass filters into other types.

FINITE IMPULSE RESPONSE (FIR) FILTER DESIGN TECHNIQUES:
Introduction, Designing, FIR filters by DFT method and frequency sampling method. Study of windows (Rectangular, Triangular, Hamming and Kaiser). Designing FIR filters with the windowing methods.

DIGITAL FILTER STRUCTURE:
The direct form I & II structures, Cascade & Parallel combination of IIInd order sections.

Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
BASICS OF STATE-VARIABLE TECHNIQUES
MTEC 1.3

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: MATRIX ALGEBRA and LINEAR SPACES: Upper and lower triangular, symmetric matrices, various operations on matrices, eigenvalues and eigenvectors, similarity transformation, modal matrix, companion form, diagonal form, Cayley-Hamilton theorem, matrix functions, vectors, linear spaces, basis, orthonormal basis, norms and their properties, singular value decomposition (SVD).

Unit2: STATE SPACE TECHNIQUES: Definition of state, state variables, state vectors, simulation of differential equations and transfer functions, obtaining state equation from simulation. Canonical forms (controllable, observable and Jordan (diagonal) canonical forms), solution of state equations, transfer function from state equations, controllability, observability.

Unit3: LYAPUNOV STABILITY: Positive (Negative) definite and semidefinite scalar functions, quadratic forms, nonlinear systems, equilibrium points, limit cycles, Lyapunov equation for linear time-invariant systems.

Unit4: DISCRETE-TIME SYSTEMS: Difference equation for LTI systems, state equation, solution of state equation, Jury’s stability test, Lyapunov stability and Lyapunov equation.

Books:
2. K. Ogata, Modern Control Engineering, Prentice-Hall of India.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MASTER OF TECHNOLOGY (ELECTRONICS AND COMMUNICATION ENG.)

STOCHASTIC METHODS
MTEC 1.4

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit 1: RANDOM VARIABLES: Probability Bay’s rule, Distribution function, Discrete random vectors, different distributions, jointly distributed random variables, order statistics, Distribution of sums, expectations, moments, transform methods mean time to failure, Inequalities and limit theorems, Mixture distribution, Conditional expectations, Imperfect fault coverage & reliability, Random sums.

Unit 2: STOCHASTIC PROCESSES: Bernoulli process, Poisson process, Renewal processes, available analysis, Random incidence, renewal model of program behavior.

Unit 3: NETWORK of QUEUES: Open and close queuing networks, Non exponential service item distributions and multiple job type, non product form networks.

Correlation & Regression: Introduction, least squares curve fitting, Coefficient of determination, Confidence of intervals in linear regression, conciliation analysis, non linear regression, Analysis of variance.

Books:
3. S.P Gupta, Statistical Methods, Sultan Chand and Sons.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University.
Digital Communication Laboratory

M.TECH 1.5

1. To study the PCM Modulation Y Demodulation Characteristics.
2. To study the characteristics of the ASK Modulation & Demodulation techniques.
3. To study the characteristics of the PSK Modulation & Demodulation techniques.
4. To study the characteristics of the FSK Modulation & Demodulation techniques.
5. To study the characteristics of the QPSK Modulation & Demodulation techniques.
6. Develop software to get the different pattern of Gaussian function by varying the standard deviation (cr) from 1 to 5, using the Matlab.
7. Develop software to get the different pattern of Rayleigh function by varying the Rayleigh constant (J.I) from 1 to 5 using Matlab.

List of Experiments Beyond Syllabus

*8. To study Sampling theorem & reconstruction of signal

*9. To study Delta Modulation and Demodulation techniques.

*10. To study PAM, PPM, and PWM Modulation and Demodulation techniques.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
Master of Technology (Electronics and Communication Engg.)

INFORMATION THEORY & CODING
MTEC 2.1

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: Basic Concepts of Information Theory: A measure of Uncertainty, Binary Sources, Measure of Information for two-dimensional discrete finite probability Scheme, Noise characteristics of channel, Basic relationship among different entropies, Measure of mutual information channel capacity, Capacity of channel with symmetric noise structure BSC and BEC.

Coding for Reliable Digital Transmission & Storage: Introduction, types of codes, Modulation and Demodulation, Maximum likelihood decoding, types of codes, Modulation and Demodulation, Maximum likelihood decoding, types of error, error control strategies.

Unit3: Introduction to Algebra: Groups, Fields Binary field Arithmetic, Construction of Galois field GF (2m), Basic Properties of Galois Field GF (2m), Vector Spacer, Matrices.

Linear Block Codes: Introduction to Linear Block codes, Syndrome and Error detection, Minimum distance of block code, Hamming Code.

Cyclic Codes: Description of Cyclic codes, Generator and parity check matrices of cyclic codes, encoding of cyclic codes syndrome computation & error detection decoding of cyclic codes, Error trapping decoding of cyclic codes, Goley Codes.

Unit4: BCH Codes: Description of codes, Decoding of BCH codes, Implementation of Galoes Fields Arithmetic, Implementation of error connection.

Convolution Codes: Encoding of convolution codes, structural properties of Convolution codes, distance properties of Conventional codes, Distance Properties of convolution codes, Maximum likelihood decoding of convolution codes.

Automatic Repeat Request Strategies: Stop and wait, Go back and selective repeat ARQ strategies, Hybrid ARQ Schemes.

Books:
1. F.M Reza: Information Theory, Mc Graw Hill
2. ShuLin & J Costeib: Error Control Coding, PHI

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: Introduction: Advantage of optical fiber communication, Elements of fiber communication link, Ray theory and electromagnetic mode theory for optical propagation, step index and graded index fiber numerical aperture.

Optical Filters: Attenuation, Absorption, Linear and non-linear scattering losses, Dispersion, overall fiber dispersion, polarization, fiber bending losses, multimode step index and graded index fibers, single mode fiber, plastic clad and all plastic fibers, optical fibers cables, Doped fiber amplifier Dispersion shifted and dispersion flattened fibers, practical fiber profiles.

Unit2: Optical Sources: Basic concepts; LED for optical communication, Burrus type double hetero structure, Surface emitting LED’s, Shape geometry, Edge emitting LED’s, LED to fiber launch system semiconductor lasers theory, modulation and characteristics, Fabry-Perot lasers quantum well and distributed feedback lasers.

Photo Detectors: P-I-N Photo diodes: Theory and their characteristics, Avalanche Photo detectors, theory and their bandwidth Noise in APD.

Unit3: Optical Fiber Communication Systems: Optical transmitter circuit; LED and laser drive of optical receiver circuit, structure, preamplifier, AGC equalization, optical power budge loading, Analog systems; analog modulation, Direct modulation, Sub carrier mode Distribution system, optical TDM sub carrier multiplexing, WDM.

Unit4: Coherent Systems: Coherent receivers, homodyne and heterodyne detection, noise in receiver, polarization control, Homodyne receiver, reusability and laser synchronous demodulation, phase diversity receiver.

Books:
Master of Technology (Electronics and Communication Engg.)

WIRELESS MOBILE COMMUNICATION
MTEC 2.3

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: MOBILE RADIO SYSTEMS: Introduction to mobile radio system, Paging systems, cordless telephone system, Cellular telephone systems-Cellular concept, frequency reuse, channel assignment strategies, interference and system capacity, trucking and grade of service, cell splitting, sectoring, microcell zone concept, HO Strategies.

Unit2: MOBILE RADIO PROPAGATION: Mechanism, free space path loss, long-distance path loss models, Okumara model, Hata model, PCS model, Wideband PCS microcell model, indoor propagation models, Jake’s channel model, Multipath characteristics of radio waves, signal fading, time dispersion, Doppeler spread, coherence time LCR, fading statistics, diversity techniques.

Unit3: SPREAD SPECTRUM COMMUNICATION: Introduction to spread spectrum communication, multiple access techniques used in mobile wireless communication: FDMA/TDMA/CDMA, Cellular CDMA, packet radio protocols, CDMA, reservation protocols, capacity of cellular CDMA, soft HO.

Unit4: WIRELESS SYSTEMS: Wireless systems and standards – GSM standards, signaling and call control, mobility management, location tracing, wireless data networking, packet error mode line on fading channels, Performance analysis of link and transport layer protocols over wireless protocols over wireless channels, mobile data networking (Mobile IP), wireless data services, IS-95, GPRS.

Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: Introduction: Satellite communication, Brief History, Orbits of satellite: Low, medium and geo-synchronous main characteristics, Angle period, Returning period, Angle of Evaluation, Propagation Delay, Orbital spacing.

Unit2: Satellite Links: Delay transponder, Earth Stations, Antennas and Earth Coverage, Altitude and eclipses.

Detection: QPSK offset QPSK and MSK, Coherent and non-coherent detection, Error rate performance.

Unit4: Synchronization: Principal and techniques, Multiple Access Techniques, FDMA, SPADE system, TDMA system, Concept and configuration, system timing frames format, SSMA Basu Principles, VSAT, Random Access, Space Communication, link design description of operational in TELSAT and INSAT system.

Books:
3. Tri Ha Digital Satellite Communication Tata Mc Graw-Hill.
Master of Technology (Electronics and Communication Engg.)

NEURAL NETWORKS
MTEC 2.4 (ii)

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: Introduction: Biological neurons and memory: Structure and function of a single neuron; Artificial Neural Networks (ANN), Typical applications of ANNs; Classification, Clustering, Vector quantization, Function Approximation, Basic Approach to the working of ANN – Training, Learning and Generalization.

Unit2: Supervised Learning: Single-layer networks; Perception, Linear separability, Training algorithm, Limitations; Multi-layer networks-architecture, Back Propagation algorithm (BPA) and other training algorithms, Applications, adaptive, multi-layer networks-architecture, training algorithms; Recurrent Networks; Feedforward Networks; Radial-Basis-Function (RBF).

Unit3: Unsupervised Learning: Winner-takes-all networks; Hamming networks; Simple competitive learning; learning; Kohonen’s Self-organizing Map’s; Principal Component Analysis.

Unit4: Associated Models: Hopfield Networks, Brain-in-a-Box network; Boltzmann machine.
Optimization Methods: Hopfield Networks for TSP, solution of simultaneous linear equations; Iterated Gradient Descent; Simulated annealing; Genetic Algorithm.

Text/References:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
Master of Technology (Electronics and Communication Engg.)

DSP ARCHITECTURE AND APPLICATIONS
MTEC 2.4 (iii)

L T P Exams : 60
3 1 0 Sessionals: 40
 Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: **Hardware:** TMS-320 Architecture, CPU, ALU, Program Controller, Address Generation Unit, Addressing Modes, Interrupt, Priority Register, CCS 6000.

Unit2: **Finite Wordlength Issues:** Effect of Coefficient Quantization in IIR Filters. Effect of Coefficient Quantization in FIR Filters. Effect of Round off Noise on IIR and FIR systems.

Unit3: **Instruction Set:** Instruction set for TMS-320 family for arithmetic logic, bit manipulation, loop, program control instructions, etc.

Unit4: **Applications:** Designing and implementing FIR, IIR filters, implementing Fast Fourier Transforms with TMS-320.

Text/References:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
DSP Laboratory

M.TECH 2.5

1. Familiarization with some MATLAB commands used in DSP Lab.

2. Computation of FFT and IDFT of given sequences and verifying the results by actual calculations.

3. Using MATLAB design Butterworth Filter for given specifications:
 (i) Find minimum order of the filter for the given specifications.
 (ii) Design analog filter to satisfy specifications.
 (iii) Obtain frequency response of the designed analog filter.

4. Using MATLAB discretize the Butterworth filter designed in Expt. 3 by
 (i) Impulse invariance technique, and
 (ii) Bilinear technique.
 (iii) Manually obtain Butterworth filter of Expt.3 and discretize it by impulse invariance and bilinear techniques using MATLAB and compare the results with (i) and (ii) above.

5. Using 1v1A TLAB design Chebyshev Type-I filter to satisfy given specifications and verify the results by manual design of analog filter and discretizing it using bilinear transformation of MA TLAB.

6. Using MATLAB design Chebyshev Type-II filter to satisfy given specifications and verify it by manual design.

7. Study of window characteristics of Rectangular, Triangular, Hamming and Kaiser windows for various parameters using wintool.

8. Design ~ f FIR filter for given specifications using Hamming and Kaiser windows using fdatool and verifying the results manually.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University.
Master of Technology (Electronics and Communication Engg.)

DATA COMMUNICATIONS
MTEC 3.1

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exams</th>
<th>Sessionals</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>60</td>
<td>40</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit 1: **Introduction**: A Communication model, Data Communications, Data Communication Networking, Need for Protocol Architecture, A Simple Protocol Architecture, OSI Model, the TCP/IP Protocol Architecture.

Unit 3: **Digital Data Communication Techniques**: Asynchronous and Synchronous Transmission, Types of Errors, Error Detection, Error correction, Line Configurations, Interfacing. **Data Link Control**: Flow control, Error Control, High-Level Data Control. **Multiplexing**: Multiplexing using Frequency Division, Synchronous Time Division and Statistical Time Division; Asymmetric Digital Subscriber Line Xdsl. **Spread Spectrum**: The Concept of Spread Spectrum, Frequency-Hoping and Direct Sequence Spread Spectrum, Code-Division Multiple Access.

Text Book:

Referenee Books:
4. Data Communication by FOROUZAN TMCG & NETWORKING.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University.
Master of Technology (Electronics and Communication Engg.)

ADVANCED DIGITAL COMMUNICATIONS SYSTEM
MTECH 3.2

L T P Exams : 60
3 1 0 Sessionals: 40
Time: 3 Hours

INSTRUCTIONS: There shall be eight questions in total, two from each unit. Students are required to attempt five questions selecting at least one from each unit. All questions will carry equal marks.

Unit1: INTRODUCTION: Geometric representation of modulation signals, Linear modulation technique, π/4 QPSK, offset QPSK, Constant envelop technique, MSK, GMSK, Linear & Constant envelop modulation technique, M-ary PSK, M-ary QAM.

Unit2: Spread spectrum system like DS-Spread spectrum, Pseudo noise sequences, Performance of DS-SS, Frequency Hopping systems, Modulation Error performance for Binary signal in AWGN, Detection of M-ary orthogonal, M-ary orthogonalizing with non-coherent detection.

Unit3: Equalization: Adaptive equalizer, Linear Equalizer, Nonlinear Equalizer, ISI interference, RAKE receiver, Maximum likelihood sequence estimation (MLSE) equalizer.

Unit4: Rayleigh fading distribution, Ricean fading distribution, Speech coding, Characterization of Speech signals, Vector quantization, Adaptive quantization, Power spectrum for general memory less modulation.

Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
List of Experiments

1. Plot the power spectrum pattern of the Gaussian Minimum Shift Modulator (GMSK), using Commsim Software & also compare the result of this pattern by varying the carrier frequency.

2. Plot the attenuated signal pattern, when the signal is propagated over a long distance (Km), using Commsim Software.

3. Develop software to get the free space path loss propagation by varying the distances between the transmitter & receiver & Compare the result graphically, using the Matlab.

4. Develop Software to get the different, Pattern of Gaussian Function by varying the standard deviation (σ) from 1 to S, using the Matlab.

5. Develop software to get the different pattern of Rayleigh function by varying the Rayleigh constant ($f.L$) from I to S, using the Matlab.

6. Plot the Doppler fading power spectrum pattern & compare the result by varying the Doppler frequency shift. Using Commsim software.

7. Get the output of convolution encoder & decoder, also compare the result by varying the PN sequences graphically, using tqe Commsim software.

8. Generate the blue tooth GFSK (Gaussian frequency shift keying) base band signal by using the Commsim software.

9. Plot the output pattern of MSK (Minimum shift keying) & Compare the result graphically by varying the carrier frequency, using the Commsim software.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University