<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>Pass</td>
<td>Max</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>40</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-11</td>
<td>ADVANCES IN ALGORITHMS</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-12</td>
<td>ADVANCED WEB TECHNOLOGIES</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-13</td>
<td>DATA WAREHOUSING & DATA MINING</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-14</td>
<td>ADVANCED COMPUTER ARCHITECTURE</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-15</td>
<td>S/W LAB – I BASED ON MT-CSE-14-11</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-16</td>
<td>S/W LAB – II BASED ON MT-CSE-14-12</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-17</td>
<td>SEMINAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>600</td>
<td>250</td>
<td>850</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-21</td>
<td>OBJECT ORIENTED ANALYSIS & DESIGN USING UML</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-22</td>
<td>DIGITAL IMAGE PROCESSING</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-23</td>
<td>ELECTIVE - I</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-24</td>
<td>ELECTIVE - II</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-25</td>
<td>S/W LAB – III BASED ON MT-CSE-14-21</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-26</td>
<td>S/W LAB – IV BASED ON MT-CSE-14-22</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-27</td>
<td>SEMINAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>600</td>
<td>250</td>
<td>850</td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVE PAPERS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-23(i)</td>
<td>SOFTWARE QUALITY MODELS & TESTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-24(i)</td>
<td>DISTRIBUTED SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-23(ii)</td>
<td>HIGH PERFORMANCE NETWORKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-24(ii)</td>
<td>BIOMETRICS SYSTEM SECURITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-23(iii)</td>
<td>ADVANCES IN DATABASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-24(iii)</td>
<td>SECURITY IN COMPUTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-31</td>
<td>RESEARCH METHODOLOGY & TOOLS</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-32</td>
<td>ADVANCED OPERATING SYSTEMS</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-33</td>
<td>ELECTIVE – I</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-34</td>
<td>ELECTIVE - II</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>MT-CSE-14-35</td>
<td>S/W LAB – V BASED ON MT-CSE-14-31</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-36</td>
<td>S/W LAB – VI BASED ON MT-CSE-14-32</td>
<td>3</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>MT-CSE-14-37</td>
<td>SEMINAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>600</td>
<td>250</td>
<td>850</td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVE PAPERS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-33(i)</td>
<td>DATA ANALYTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-34(i)</td>
<td>CLOUD COMPUTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-33(ii)</td>
<td>SOFT COMPUTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-34(ii)</td>
<td>WIRELESS NETWORKS AND MOBILE COMPUTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-33(iii)</td>
<td>GENETIC ALGORITHMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CSE-14-34(iii)</td>
<td>SEMANTIC WEB AND SOCIAL NETWORKING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-CSE-14-41</td>
<td>DISSERTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>80</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>60</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>350</td>
<td>100</td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

GRAND TOTAL

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Exam Time (hrs.)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2150</td>
<td>850</td>
<td>3000</td>
<td></td>
</tr>
</tbody>
</table>

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-31 RESEARCH METHODOLOGY AND TOOLS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I

Problem Identification & Formulation: Research Question, Investigation Question, Measurement Issues, Hypothesis, Qualities of a good Hypothesis, Null Hypothesis & Alternative, Research Design: Concept and Importance in Research – Features of a good research design – Exploratory Research Design: Concept, types and uses, Descriptive Research Designs: concept, types and uses. Experimental Design: Concept of Independent & Dependent variables. Qualitative and Quantitative Research: Qualitative research, Quantitative research, Concept of measurement, causality, generalization, replication. Merging the two approaches.

UNIT – II

Measurement: Concept of measurement, Problems in measurement in research – Validity and Reliability. Levels of measurement – Nominal, Ordinal, Interval, Ratio.

Thesis Writing: Writing - introduction, review of literature, results, abstract, summary, synopsis, Reference citing and listing.

UNIT – III

Introduction to R: Functions and packages in R; working with dataset in R; use of R for doing statistical analysis and graphics; R commands, Working with objects.

UNIT – IV

Introduction to MATLAB/SCILAB/OCTAVE: Environment, Variables, Classes of variables, Statements, Operators, Expressions, Vectors and Matrices, Control and Loop constructs, Scripts and Functions, Input and Output statements, Using File Input and File output, User defined Functions, Program organization, String variable, Cell array and structures array, MAT-files and Input/Output, Function handles, Plot function, Animation, 2-D and 3-D plotting (line, pie, bar, Histogram, Polar, Contour, volumes, polygons), Customizing plots, Customizing plots, Creating applications with Graphical User Interface (GUI), Initialize and Designing GUI interfaces, Code and FIG files, Callback functions: Push buttons, toggle buttons, radio button, Check box, Slider, Pop-up menu , Adding components to GUIDE layout area, panels and Button groups, Axes, tables, ActiveX Component, Menus for GUI.

Reference Books:
1. Donald Cooper & Pamela Schindler, Business Research Methods, McGraw Hill.
2. Alan Bryman & Emma Bell, Business Research Methods, Oxford University Press.
5. Montgomery, Douglas C., Design and Analysis of Experiments, Wiley India Pvt. Ltd.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-32 ADVANCED OPERATING SYSTEMS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I

UNIT – II

UNIT – III

UNIT – IV

Reference Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-33(i) DATA ANALYTICS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I

UNIT – II

UNIT – III

UNIT – IV
NoSQL Database concepts, Schema, Two Phase Commit, Sharding & Share Nothing Architecture, Feature Based, Key Based, Lookup Table Based, Cassandra Definition & Features, Distributed & Decentralized, Elastic Scalability, High Availability & Fault Tolerance, Tuneable Consistency, Strict & Casual Consistency, Column Orientation, Schema Free, High Performance. Creating Keyspace and Column Family, Writing and Reading Data, Cluster, Wide Rows, Skinny Rows, Referential Integrity, Secondary Indexes, Sorting, DeNormalisation, Design Patterns, Materialized Views. CQL-Data Definition language(DDL) Statements, Data Manipulation Language (DML), Create and modify Users, User permission, Capture CQL output to a file, Import and export data, CQL scripts from within CQL, CQL Scripts from the command prompt.

REFERENCE BOOKS:
7. Big Data for Dummies by Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Elsevier India.
8. Python for Data Analysis by Wes McKinney

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-33(ii) SOFT COMPUTING

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I

UNIT – II

UNIT – III

Genetic Algorithm (GA): Evolutionary computing, conditions for evolution, Simple Genetic Algorithm (SGA), different types of operators: Selection, Crossover, mutation and replacement, optimization problems and traditional optimization methods, differences between GA & traditional methods, Holland’s schemata theorem, encoding schemes.

UNIT – IV

Random Optimization, Simulated Annealing, Tabu Search, Ant Colony Optimization, Particle Swarm Optimization, Memetic Algorithms.

Text Books:
1. S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley India Pvt. Ltd..

Reference Books:
1. Jang, Sun, Mizutani, Neuro-Fuzzy and Soft computing, Pearson Education.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-33(iii) GENETIC ALGORITHMS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I
Introduction: Goal of optimization, local and global optima. Multi-objective optimization, Problems in global optimization like premature convergence to a local optimum, overfitting etc., A brief history of evolutionary computation, The appeal of evolution, Biological terminology, Search spaces and fitness landscapes, Conventional Optimization and Search Techniques - Gradient-Based Local Optimization Method, Random Search, Stochastic Hill Climbing, Simulated Annealing etc.

UNIT – II
Genetic algorithms (GA), Evolution strategies, Difference between Genetic Algorithm and traditional methods, Selection – elitism, rank selection, tournament selection, Boltzmann selection, steady state selection etc.; Crossover, mutation; Schema theorem – schemata and masks, Wildcards, Holland’s schema theorem and criticism; convergence.

UNIT – III
Computer Implementation of Genetic Algorithm: Data Structures, Reproduction, Crossover, and mutation, Mapping objective functions to fitness form, Fitness scaling, Different types of encodings - Binary Encoding, Octal Encoding, Hexadecimal Encoding, Permutation Encoding, Value Encoding, Tree Encoding etc.

UNIT – IV
Advanced operators and techniques in Genetic Search: Dominance, Diploidy, and Abeyance, Inversion and other reordering operators like partially matched crossover, order crossover and cycle crossover, Niche and speciations, Micro-operators, Knowledge based techniques, Genetic algorithm and parallel processors.
Classification of Genetic Algorithm: Simple Genetic Algorithm (SGA), Parallel and Distributed Genetic Algorithm (PGA and DGA), Hybrid Genetic Algorithm (HGA), Adaptive Genetic Algorithm (AGA), Fast Messy Genetic Algorithm (FmGA), Independent Sampling Genetic Algorithm (ISGA).

Text Books:

Reference Books:

Note: Students are advised to verify scheme and syllabus from Kurukshetra University
MT-CSE-14-34(i) CLOUD COMPUTING

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I

UNIT – II
Cloud Services & Platforms: Compute services, Storage services Database services, Application Services, Queuing services, E-mail services, Notification services, Media services, Content delivery services, Analytics services, Deployment & management services, Identity & access management services. Case studies of these services. Federated & Multimedia Cloud Computing: architecture, features of federation types, federation scenarios, layers enhancement of federation; Multimedia Cloud.

UNIT – III

UNIT – IV
Developing for Cloud: Design considerations for cloud applications, reference architectures for cloud applications, cloud application design methodologies, data storage approaches Python for Cloud: Python characteristics, data types & data structures, control flows, functions, modules, packages, file handling, date/time operations, classes, Python web application framework – Django.

Text Books

Reference Books
1. Barrie Sosinsky, Cloud Computing Bible, Wiley India Pvt. Ltd.
UNIT – I
Evolution and Challenges of Wireless Networks; The Electromagnetic Spectrum; Modulation Techniques and Multiple Access for Wireless Systems; Spread Spectrum; Overview of Mobile Computing and its applications; Cellular Networks: Concept; Call Set-up; Frequency Reuse; Channel Assignment; Handoff; Mobility Management; GSM and IS-95 architecture, channels, and Call Establishment; Wireless Data Service; 3G and 4G Cellular Systems.

UNIT – II
Introduction to Ad Hoc Wireless Networks; Issues in Ad Hoc Wireless Networks; MAC Protocols for Ad Hoc Wireless Networks: Introduction, Issues, Classification, Contention-Based Protocols; Contention-Based Protocols with Reservation Mechanisms; Contention-Based Protocols with Scheduling Mechanisms; Routing Protocols for Ad Hoc Networks: Introduction, Issues; Classification; Table-Driven Routing Protocols; On-Demand Routing Protocols; Hybrid Routing Protocols; Routing Protocols with Efficient Flooding Mechanisms; Hierarchical Routing Protocols.

UNIT – III
Multicast Routing in Ad Hoc Networks: Introduction; Issues; Operation of Multicast Routing Protocols; Classification; Tree-Based Multicast Routing Protocols; Mesh-Based Multicast Routing Protocols; Energy Efficient Multicasting; Transport Layer For Ad Hoc Wireless Networks: Introduction and Design Issues; TCP over Ad Hoc Wireless Networks; Network Security Requirements and Attacks; Key Management; Secure Routing in Ad Hoc Wireless Networks; WEP protocol.

UNIT - IV

Text Books:
1. C. Siva Ram Murthy and B.S. Manoj, “Ad Hoc Wireless Networks – Architectures and Protocols”, Pearson Education

Reference Books:
2. Sipra DasBit, Biplab K. Sikdar, “Mobile Computing”, PHI.
MT-CSE-14-34(iii) SEMANTIC WEB AND SOCIAL NETWORKING

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of objective type/short-answer type questions covering the entire syllabus. In addition to question no. 1, the examiner is required to set eight more questions selecting two from each unit. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit. All questions will carry equal marks.

UNIT – I
Knowledge Representation for the Semantic Web Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web

UNIT – II

UNIT – III
Semantic Web Applications, Services and Technology Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base .XML Based Web Services, Creating an OWLS Ontology for Web Services,

UNIT - IV
Social Network Analysis and semantic web: What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis Electronic Discussion networks, Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.

Text Books:
1. Berners Lee, Godel and Turing, Thinking on the Web Wiley India Pvt. Ltd.

Reference Books:
3. Frank Van Harmelen, Information Sharing on the semantic Web Heiner Stuckenschmidt; Springer Publications.
4. T.Segaran, C.Evans, J.Taylor, Programming the Semantic Web, O’Reilly, SPD.

Note: Students are advised to verify scheme and syllabus from Kurukshetra University